pullback$65407$ - определение. Что такое pullback$65407$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое pullback$65407$ - определение

IN GEOMETRY, TRANSFERRING A DIFFERENTIAL FORM OR FIBER BUNDLE FROM THE CODOMAIN OF A CONTINUOUS MAP TO THE DOMAIN
Pullback map; Pullback (smooth map)

Pullback (differential geometry)         
Suppose that is a smooth map between smooth manifolds M and N. Then there is an associated linear map from the space of 1-forms on N (the linear space of sections of the cotangent bundle) to the space of 1-forms on M.
Pullback (category theory)         
  • 125px
  • 225px
  • The category of commutative rings admits pullbacks.
CATEGORY-THEORETIC LIMIT
Fiber product; Pullback diagram; Fibre product; Categorical pullback; Fibered product; Fibred product; Pullback square; Cartesian diagram; Cartesian square (category theory); Weak pullback; Weak pullbacks
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms and with a common codomain. The pullback is often written
Pullback motor         
  • Darda model car powered by a pullback motor
SIMPLE CLOCKWORK MOTOR USED IN TOY CARS
Pull-back motor; Pullback action; Pullback car; Windup car; Pullback toy cars
A pullback motor (also pull back or pull-back) is a simple clockwork motor used in toy cars. A patent for them was granted to Bertrand 'Fred' Francis in 1952 as a keyless clockwork motor.

Википедия

Pullback (differential geometry)

Let ϕ : M N {\displaystyle \phi :M\to N} be a smooth map between smooth manifolds M {\displaystyle M} and N {\displaystyle N} . Then there is an associated linear map from the space of 1-forms on N {\displaystyle N} (the linear space of sections of the cotangent bundle) to the space of 1-forms on M {\displaystyle M} . This linear map is known as the pullback (by ϕ {\displaystyle \phi } ), and is frequently denoted by ϕ {\displaystyle \phi ^{*}} . More generally, any covariant tensor field – in particular any differential form – on N {\displaystyle N} may be pulled back to M {\displaystyle M} using ϕ {\displaystyle \phi } .

When the map ϕ {\displaystyle \phi } is a diffeomorphism, then the pullback, together with the pushforward, can be used to transform any tensor field from N {\displaystyle N} to M {\displaystyle M} or vice versa. In particular, if ϕ {\displaystyle \phi } is a diffeomorphism between open subsets of R n {\displaystyle \mathbb {R} ^{n}} and R n {\displaystyle \mathbb {R} ^{n}} , viewed as a change of coordinates (perhaps between different charts on a manifold M {\displaystyle M} ), then the pullback and pushforward describe the transformation properties of covariant and contravariant tensors used in more traditional (coordinate dependent) approaches to the subject.

The idea behind the pullback is essentially the notion of precomposition of one function with another. However, by combining this idea in several different contexts, quite elaborate pullback operations can be constructed. This article begins with the simplest operations, then uses them to construct more sophisticated ones. Roughly speaking, the pullback mechanism (using precomposition) turns several constructions in differential geometry into contravariant functors.